Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Heliyon ; 10(7): e28738, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560247

RESUMO

Background: Given that the circadian rhythm is intricately linked to cardiovascular physiological functions, the objective of this investigation was to employ bibliometric visualization analysis in order to scrutinize the trends, hotspots, and prospects of the circadian rhythm and cardiovascular disease (CVD) over the past two decades. Methods: A thorough exploration of the literature related to the circadian rhythm and CVD was conducted via the Web of Science Core Collection database spanning the years 2002-2022. Advanced software tools, including citespace and VOSviewer, were employed to carry out a comprehensive analysis of the co-occurrence and collaborative relationships among countries, institutions, journals, references, and keywords found in this literature. Furthermore, correlation mapping was executed to provide a visual representation of the data. Results: The present study encompassed a total of 3399 published works, comprising of 2691 articles and 708 reviews. The publications under scrutiny were primarily derived from countries such as the United States, Japan, and China. The most prominent research institutions were found to be the University of Vigo, University of Minnesota, and Harvard University. Notably, the journal Chronobiology International, alongside its co-cited publications, had the most substantial contribution to the research in this field. Following an exhaustive analysis, the most frequently observed keywords were identified as circadian rhythm, blood pressure, hypertension, heart rate, heart rate variability, and melatonin. Furthermore, a nascent analysis indicated that future research might gravitate towards topics such as inflammation, metabolism, oxidative stress, and autophagy, thereby indicating new directions for investigation. Conclusion: This analysis represents the first instance of bibliometric scrutiny pertaining to circadian rhythm and its correlation with cardiovascular disease (CVD) through the use of visualization software. Notably, this study has succeeded in highlighting the recent research frontiers and prominent trajectories in this field, thereby providing a valuable contribution to the literature.

2.
Int Immunopharmacol ; 132: 112002, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608473

RESUMO

BACKGROUND: Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. METHODS: The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RESULTS: RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. CONCLUSION: Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.

3.
Mol Neurobiol ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231323

RESUMO

Lactate is not only the energy substrate of neural cells, but also an important signal molecule in brain. In modern societies, disturbed circadian rhythms pose a global challenge. Therefore, exploring the influence of circadian period on lactate and its metabolic kinetics is essential for the advancement of neuroscientific research. In the present study, the different groups of mice (L: 8:00 a.m.; D: 20:00 p.m.; SD: 20:00 p.m. with 12 h acute sleep deprivation) were infused with [3-13C] lactate through the lateral tail vein for a duration of 2 min. After 30-min lactate metabolism, the animals were euthanized and the tissues of brain and liver were obtained and extracted, and then, the [1H-13C] NMR technology was employed to investigate the kinetic information of lactate metabolism in different brain regions and liver to detect the enrichment of various metabolic kinetic information. Results revealed the fluctuating lactate concentrations in the brain throughout the day, with lower levels during light periods and higher levels during dark periods. Most metabolites displayed strong sensitivity to circadian rhythm, exhibiting significant day-night variations. Conversely, only a few metabolites showed changes after acute sleep deprivation, primarily in the temporal brain region. Interestingly, in contrast to brain lactate metabolism, liver lactate metabolism exhibited a significant increase following acute sleep deprivation. This study explored the kinetics of lactate metabolism, hinted at potential clinical implications for disorders involving circadian rhythm disturbances, and providing a new research basis for clinical exploration of brain and liver lactate metabolism.

4.
Sci Rep ; 14(1): 2328, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282163

RESUMO

Inulin, as a prebiotic, could modulate the gut microbiota. Burn injury leads to gut microbiota disorders and skeletal muscle catabolism. Therefore, whether inulin can improve burn-induced muscle atrophy by regulating microbiota disorders remains unknown. This study aimed to clarify that inulin intake alleviates gut microbiota disorders and skeletal muscle atrophy in burned rats. Rats were divided into the sham group, burn group, prebiotic inulin intervention group, and pseudo-aseptic validation group. A 30% total body surface area (TBSA) third-degree burn wound on dorsal skin was evaluated in all groups except the sham group. Animals in the intervention group received 7 g/L inulin. Animals in the validation group received antibiotic cocktail and inulin treatment. In our study inulin intervention could significantly alleviate the burn-induced skeletal muscle mass decrease and skeletal myoblast cell apoptosis. Inulin intake increased the abundances of Firmicutes and Actinobacteria but decreased the abundance of Proteobacteria. The biosynthesis of amino acids was the most meaningful metabolic pathway distinguishing the inulin intervention group from the burn group, and further mechanistic studies have shown that inulin can promote the phosphorylation of the myogenesis-related proteins PI3K, AKT and P70S6K and activate PI3K/AKT signaling for protein synthesis. In conclusion, inulin alleviated burn induced muscle atrophy through PI3K/AKT signaling and regulated gut microbiota dysbiosis.


Assuntos
Queimaduras , Microbioma Gastrointestinal , Ratos , Animais , Inulina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Suplementos Nutricionais , Queimaduras/complicações , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166944, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952827

RESUMO

Sema4D (CD100) is closely related to pathological and physiological processes, including tumor growth, angiogenesis and cardiac development. Nevertheless, the role and mechanism of Sema4D in cardiac hypertrophy are still unclear to date. To assess the impact of Sema4D on pathological cardiac hypertrophy, TAC surgery was performed on C57BL/6 mice which were transfected with AAV9-mSema4D-shRNA or AAV9-mSema4D adeno-associated virus by tail vein injection. Our results indicated that Sema4D knockdown mitigated cardiac hypertrophy, fibrosis and dysfunction when exposed to pressure overload, and Sema4D downregulation markedly inhibited cardiomyocyte hypertrophy induced by angiotensin II. Meanwhile, Sema4D overexpression had the opposite effect in vitro and in vivo. Furthermore, analysis of signaling pathways showed that Sema4D activated the MAPK pathway during cardiac hypertrophy induced by pressure overload, and the pharmacological mitogen-activated protein kinase kinase 1/2 inhibitor U0126 almost completely reversed Sema4D overexpression-induced deteriorated phenotype, resulting in improved cardiac function. Further research indicated that myocardial hypertrophy induced by Sema4D was closely related to the expression of the pyroptosis-related proteins PP65, NLRP3, caspase-1, ASC, GSDMD, IL-18 and IL-1ß. In conclusion, our study demonstrated that Sema4D regulated the process of pathological myocardial hypertrophy through modulating MAPK/NF-κB/NLRP3 pathway, and Sema4D may be the promising interventional target of cardiac hypertrophy and heart failure.


Assuntos
Antígenos CD , Miócitos Cardíacos , NF-kappa B , Semaforinas , Animais , Camundongos , Cardiomegalia/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
6.
Diabetes Obes Metab ; 26(2): 732-744, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37961034

RESUMO

AIMS: To investigate the role of FOXO1 in STAT3 activation and mitochondrial quality control in the diabetic heart. METHODS: Type 1 diabetes mellitus (T1DM) was induced in rats by a single intraperitoneal injection of 60 mg · kg-1 streptozotocin (STZ), while type 2 diabetes mellitus (T2DM) was induced in rats with a high-fat diet through intraperitoneal injection of 35 mg · kg-1 STZ. Primary neonatal mouse cardiomyocytes and H9c2 cells were exposed to low glucose (5.5 mM) or high glucose (HG; 30 mM) with or without treatment with the FOXO1 inhibitor AS1842856 (1 µM) for 24 hours. In addition, the diabetic db/db mice (aged 8 weeks) and sex- and age-matched non-diabetic db/+ mice were treated with vehicle or AS1842856 by oral gavage for 15 days at a dose of 5 mg · kg-1 · d-1 . RESULTS: Rats with T1DM or T2DM had excessive cardiac FOXO1 activation, accompanied by decreased STAT3 activation. Immunofluorescence and immunoprecipitation analysis showed colocalization and association of FOXO1 and STAT3 under basal conditions in isolated cardiomyocytes. Selective inhibition of FOXO1 activation by AS1842856 or FOXO1 siRNA transfection improved STAT3 activation, mitophagy and mitochondrial fusion, and decreased mitochondrial fission in isolated cardiomyocytes exposed to HG. Transfection with STAT3 siRNA further reduced mitophagy, mitochondrial fusion and increased mitochondrial fission in HG-treated cardiomyocytes. AS1842856 alleviated cardiac dysfunction, pathological damage and improved STAT3 activation, mitophagy and mitochondrial dynamics in diabetic db/db mice. Additionally, AS1842856 improved mitochondrial function indicated by increased mitochondrial membrane potential and adenosine triphosphate production and decreased mitochondrial reactive oxygen species production in isolated cardiomyocytes exposed to HG. CONCLUSIONS: Excessive FOXO1 activation during diabetes reduces STAT3 activation, with subsequent impairment of mitochondrial quality, ultimately promoting the development of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Animais , Camundongos , Ratos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Mitocôndrias , Miócitos Cardíacos/metabolismo , RNA Interferente Pequeno/uso terapêutico
7.
Cell Signal ; 114: 111006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086436

RESUMO

Diabetes is a widespread disease that threatens the life and health of human beings, and diabetic cardiomyopathy (DCM) is one of the major complications of diabetic patients. The pathological mechanisms of DCM are complex, including inflammation, endoplasmic reticulum stress, and oxidative stress that have been reported previously. Although recent studies suggested that ferroptosis is also involved in the progression of DCM, the exact mechanism remains unclear. Rev-erbα cardiac conditional knockout mice were generated and type 2 diabetes were induced by high fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ) in in vivo experiments. In parallel, our in vitro experiments entailed the introduction of elevated levels of glucose (HG) and palmitic acid (PA) to induce glycolipid toxicity in H9c2 cardiomyocytes. Further deterioration of cardiac function was detected by echocardiography after the clock gene rev-erbα was knocked out. This was accompanied by significant elevations in markers of inflammation, myocardial fibrosis, and oxidative stress. In addition, iron content, transmission electron microscopy (TEM), and RT-PCR assays confirmed significantly increased levels of ferroptosis in rev-erbα-deficient DCM. Intriguingly, Co-Immunoprecipitation (Co-IP) data uncovered an interaction between rev-erbα and nuclear factor E2-related factor 2 (NRF2) in diabetic myocardial tissues. It is worth highlighting that ferroptosis within cardiomyocytes witnessed significant mitigation upon the administration of sulforaphane (SFN), an NRF2 agonist, to HG + PA-incubated H9c2 cells. Our study demonstrates for the first time that knockdown of the clock gene rev-erbα exacerbates myocardial injury and ferroptosis in type 2 diabetic mice, which can be reversed by activating NRF2.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Ferroptose , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/tratamento farmacológico , Inflamação , Fator 2 Relacionado a NF-E2
8.
Aging (Albany NY) ; 15(21): 12537-12550, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37950727

RESUMO

Chemotherapy-induced cognitive impairment (CICI) is a subject that requires critical solutions in neuroscience and oncology. However, its potential mechanism of action remains ambiguous. The aim of this study was to investigate the vital role of HuR in the neuroprotection of cyclosporin A (CsA) during methotrexate (MTX)-induced cognitive impairment. A series of Hu-antigen R (HuR) gain and loss experiments were used to examine cyclosporin A (CsA)-mediated translocation of HuR's ability to improve MTX-induced cognitive impairment through NCOA4-mediated ferritinophagy in vitro and in vivo. Obtained results show that the administration of CsA alleviated MTX-induced cognitive impairment in mice. The presence of MTX promoted the shuttling of HuR from the cytoplasm to the nucleus, whereas treatment with CsA increased cytoplasmic HuR expression levels and the levels of ferritinophagy-related proteins, such as NCOA4 and LC3II, compared to the MTX group. However, applying KH-3, an inhibitor of HuR, reversed CsA's impact on the expression of ferritinophagy-related proteins in the hippocampus and in vitro. Also, treatment with CsA attenuated microglial activation by altering Iba-1 expression and decreased TNF-α and IL-1ß levels in mice hippocampi. Moreover, KH-3 neutralized CsA's effects on the expression of both Iba-1 and HuR in vivo and in vitro. In summary, CsA was confirmed to have a neuroprotective role in CICI. Its possible underlying mechanisms may be involved in the translocation of HuR. Mediating the translocation of HuR during CICI could mitigate neruoinflammation and neuronal apoptosis via NCOA4-mediated ferritinophagy and, thus, alleviate cognitive impairment in mice with CICI.


Assuntos
Ciclosporina , Metotrexato , Animais , Camundongos , Apoptose , Citoplasma , Fatores de Transcrição
9.
Free Radic Biol Med ; 209(Pt 1): 135-150, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37805047

RESUMO

The complex progression of type-2 diabetes (T2DM) may result in increased susceptibility to myocardial ischemia-reperfusion (IR) injury. IR injuries in multiple organs involves ferroptosis. Recently, the clock gene Rev-erbα has aroused considerable interest as a novel therapeutic target for metabolic and ischemic heart diseases. Herein, we investigated the roles of Rev-erbα and ferroptosis in myocardial IR injury during T2DM and its potential mechanisms. A T2DM model, myocardial IR and a tissue-specific Rev-erbα-/- mouse in vivo were established, and a high-fat high glucose environment with hypoxia-reoxygenation (HFHG/HR) in H9c2 were also performed. After myocardial IR, glycolipid profiles, creatine kinase-MB, AI, and the expression of Rev-erbα and ferroptosis-related proteins were increased in diabetic rats with impaired cardiac function compared to non-diabetic rats, regardless of the time at which IR was induced. The ferroptosis inhibitor ferrostatin-1 decreased AI in diabetic rats given IR and LPO levels in cells treated with HFHG/HR, as well as the expression of Rev-erbα and ACSL4. The ferroptosis inducer erastin increased AI and LPO levels and ACSL4 expression. Treatment with the circadian regulator nobiletin and genetically targeting Rev-erbα via siRNA or CRISPR/Cas9 technology both protected against severe myocardial injury and decreased Rev-erbα and ACSL4 expression, compared to the respective controls. Taken together, these data suggest that ferroptosis is involved in the susceptibility to myocardial IR injury during T2DM, and that targeting Rev-erbα could alleviate myocardial IR injury by inhibiting ferroptosis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Traumatismo por Reperfusão Miocárdica , Ratos , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Ferroptose/genética , Diabetes Mellitus Experimental/genética , Proteínas
10.
Lancet Reg Health West Pac ; 37: 100787, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37693877

RESUMO

Background: The mortality risk related to anaesthesia in China remains poorly characterized. The objective of this study was to evaluate the anaesthesia-related mortality in terms of its incidence, changes, causes and preventability in Hubei, China, between 2017 and 2021 using a series of annual surveys. Methods: We prospectively collected information on patient, surgical, anaesthesia, and hospital characteristics for 9,391,669 anaesthesia procedures performed between 2017 and 2021 in 10 cities within Hubei Province, China. Anaesthesia-related death was defined as death that deemed to be entirely or partially attributable to anaesthesia, occurring within 24 h following anaesthesia administration. All fatalities were scrutinized consecutively to determine their root causes and preventability. The incidence and patterns of anaesthesia-related deaths were analysed from 2017 to 2021. A mixed-effects model with a Poisson link function was fitted to evaluate the city-level annual changes in risk-adjusted incidence of anaesthesia-related deaths. Findings: 600 cases of anaesthetic deaths occurred from 2017 to 2021, yielding an incidence of 6.4 per 100,000 anaesthesia procedures [95% confidence interval (95% CI): 5.9, 6.9], and most were preventable (71.3%). There was a significant decrease from 2017 to 2021, in the incidences of anaesthesia-related death across all patients, those with American Society of Anaesthesiologists physical status (ASAPS) ≥III, and those who had general anaesthesia, with a percentage reduction of 57.6%, 59.1%, and 55.9%, respectively. The risk-adjusted annual changes indicated significant downward trends for the incidence of anaesthetic mortality from 2017 to 2018, 2019, 2020, and 2021. For instance, the risk-adjusted annual changes for the anaesthetic mortality incidence from 2017 to 2021 was -2.5 (95% CI: -1.4, -4.7). Interpretation: In this large, comprehensive database study conducted in Central China, the anaesthesia-related death incidence was 6.4 per 100,000. Notably, the incidence of anaesthesia-related deaths decreased between 2017 and 2021. However, further in-depth analysis is needed to understand the extent to which these trends represent a change in patient safety. Funding: Innovation and optimization of perioperative respiratory system management strategy (Hubei Technological Innovation Special Fund, 2019ACA167).

11.
Biochem Pharmacol ; 217: 115816, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748665

RESUMO

Sepsis-associated encephalopathy (SAE) is an acute brain dysfunction induced by systemic inflammation caused by sepsis and is one of the most common types of encephalopathy in intensive care units. Deteriorative neuroinflammation is closely related to the development of brain injury, which often transforms into common pathological manifestations in patients with severe sepsis. Therefore, taking necessary preventive and protective measures for potential brain injury and promptly reducing neuroinflammatory injury is necessary to improve the long-term prognoses of patients. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) can play a significant protective role in septic lung injury, but studies on its expression and role in neurological diseases are rare. In the present study, we found that TIPE2 can expressed in microglia and ameliorate brain injury caused by SAE by suppressing neuroinflammation. The RhoA/ROCK2 pathway is the central coordinator of tissue injury response, and the activation of RhoA participates in the lipopolysaccharide-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. The activation of RhoA and phosphorylation of NF-κB was enhanced after TIPE2 deficiency. Importantly, TIPE2 negatively regulates inflammatory responses in vivo and in vitro and plays a protective role in SAE by inhibiting the activation of RhoA/ROCK2-NF-κB signaling pathways. The ultimate aim of our proposed project is to provide a theoretical basis for the development of a novel strategy for the early prevention and therapy of SAE.


Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Encefalopatia Associada a Sepse , Sepse , Humanos , Lesões Encefálicas/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Quinases Associadas a rho/metabolismo , Sepse/complicações , Encefalopatia Associada a Sepse/tratamento farmacológico , Transdução de Sinais/fisiologia
12.
Altern Ther Health Med ; 29(8): 150-155, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37535921

RESUMO

Objective: To investigate the association of nonpuerperal mastitis with cytokines related to the helper T cells TH1/TH2 and TH17/Treg and associated immune balance. Methods: From 2016 to 2021, we included 40 patients with non-puerperal mastitis who underwent surgery at China-Japan Friendship Hospital and compared them with 40 control patients with benign non-infectious breast disease. Hematoxylin-eosin staining detects inflammatory infiltrates of breast tissue. The expression of interferon γ and interleukin 4 in breast tissue was detected by immunofluorescence imaging, and the relative protein expression of TH1/TH2 and TH17/Treg cell-associated cytokines in CD4+ T cells was detected by western blotting. CD4+ T cells were isolated by fluorescence-activated cell sorting for detection of the relative protein expression of interferon γ and interleukin 4 in CD4+ T cells. Results: Hematoxylin-eosin staining showed that the nonpuerperal mastitis group had significantly greater inflammatory infiltration than the control group. Immunofluorescence images showed the relative fluorescence intensity of interferon γ was significantly higher in the nonpuerperal mastitis group than in the control group (P < .001), but the relative fluorescence intensity of interleukin 4 did not significantly differ between the 2 groups (P = .0686). Western blotting revealed that the relative protein expression of interferon γ, interleukin 2, and interleukin 17 was significantly higher in the nonpuerperal mastitis group than in the control group (P < .001), but the relative protein expression of interleukin 4 (P = .0512), interleukin 10 (P = .3088), and transforming growth factor ß (P = .0653) did not significantly differ between the 2 groups. Flow cytometry of isolated CD4+ T cells showed the relative protein expression of interferon γ was significantly higher in the nonpuerperal mastitis group than in the control group (P < .001), but the relative protein expression of interleukin 4 did not significantly differ between the 2 groups (P = .0680). Conclusion: The expression of the TH1 cytokines interferon γ and interleukin 2 and the TH17 cytokine interleukin 17 was significantly higher in patients with nonpuerperal mastitis, while the TH2 cytokine interleukin 4 and the Treg cytokines interleukin 10 and transforming growth factor ß were expressed at lower levels. This study provides new research ideas for the treatment of mastitis.


Assuntos
Citocinas , Mastite , Feminino , Humanos , Citocinas/metabolismo , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Linfócitos T Reguladores/metabolismo , Interferon gama/metabolismo , Células Th17/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Hematoxilina/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Mastite/metabolismo
13.
Cell Commun Signal ; 21(1): 192, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537600

RESUMO

BACKGROUND: The cause of aggravation of diabetic myocardial damage is yet to be elucidated; damage to mitochondrial function has been a longstanding focus of research. During diabetic myocardial ischaemia-reperfusion (MI/R), it remains unclear whether reduced mitochondrial fusion exacerbates myocardial injury by generating free damaged mitochondrial DNA (mitoDNA) and activating the cGAS-STING pathway. METHODS: In this study, a mouse model of diabetes was established (by feeding mice a high-fat diet (HFD) plus a low dose of streptozotocin (STZ)), a MI/R model was established by cardiac ischaemia for 2 h and reperfusion for 30 min, and a cellular model of glycolipid toxicity induced by high glucose (HG) and palmitic acid (PA) was established in H9C2 cells. RESULTS: We observed that altered mitochondrial dynamics during diabetic MI/R led to increased mitoDNA in the cytosol, activation of the cGAS-STING pathway, and phosphorylation of the downstream targets TBK1 and IRF3. In the cellular model we found that cytosolic mitoDNA was the result of reduced mitochondrial fusion induced by HG and PA, which also resulted in cGAS-STING signalling and activation of downstream targets. Moreover, inhibition of STING by H-151 significantly ameliorated myocardial injury induced by MFN2 knockdown in both the cell and mouse models. The use of a fat-soluble antioxidant CoQ10 improved cardiac function in the mouse models. CONCLUSIONS: Our study elucidated the critical role of cGAS-STING activation, triggered by increased cytosolic mitoDNA due to decreased mitochondrial fusion, in the pathogenesis of diabetic MI/R injury. This provides preclinical insights for the treatment of diabetic MI/R injury. Video Abstract.


Assuntos
Diabetes Mellitus , GTP Fosfo-Hidrolases , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Diabetes Mellitus/patologia , Modelos Animais de Doenças , DNA Mitocondrial/metabolismo , Isquemia/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Nucleotidiltransferases/metabolismo , Reperfusão , GTP Fosfo-Hidrolases/metabolismo
14.
Exp Neurol ; 367: 114463, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295545

RESUMO

Insufficient PTEN-induced kinase 1 (PINK1)-mediated mitophagy and activation of caspase-3/gasdermin E (GSDME)-dependent pyroptosis constitute the potential etiology of postoperative cognitive dysfunction (POCD), a severe neurological complication characterized by learning and memory deficits. Synaptosomal-Associated Protein 25 (SNAP25), a well-defined presynaptic protein that mediates the fusion between synaptic vesicles and plasma membrane, is crucial in autophagy and the trafficking of extracellular proteins to the mitochondria. We investigated whether SNAP25 regulates POCD via mitophagy and pyroptosis. SNAP25 downregulation was observed in the hippocampi of rats undergoing isoflurane anesthesia and laparotomy. SNAP25 silencing restrained PINK1-mediated mitophagy and promoted reactive oxygen species (ROS) production and caspase-3/GSDME-dependent pyroptosis in isoflurane (Iso) + lipopolysaccharide (LPS)-primed SH-SY5Y cells. SNAP25 depletion also destabilized PINK1 on the outer membrane of the mitochondria and blocked Parkin translocation to the mitochondria. In contrast, SNAP25 overexpression alleviated POCD and Iso + LPS-induced defective mitophagy and pyroptosis, which was reversed by PINK1 knockdown. These findings suggest that SNAP25 exerts neuroprotective effects against POCD by boosting PINK1-dependent mitophagy and hindering caspase-3/GSDME-dependent pyroptosis, providing a novel option for the management of POCD.


Assuntos
Isoflurano , Neuroblastoma , Complicações Cognitivas Pós-Operatórias , Humanos , Ratos , Animais , Mitofagia/fisiologia , Piroptose , Caspase 3 , Proteína 25 Associada a Sinaptossoma/farmacologia , Lipopolissacarídeos/farmacologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-37389674

RESUMO

PURPOSE: P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI. METHODS: We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them. RESULTS AND CONCLUSION: In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.

16.
Biomed Pharmacother ; 163: 114827, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37141734

RESUMO

Myocardial ischemia-reperfusion injury is a common condition in cardiovascular diseases, and the mechanism of its occurrence involves multiple complex metabolic pathways and signaling pathways. Among these pathways, glucose metabolism and lipid metabolism play important roles in regulating myocardial energy metabolism. Therefore, this article focuses on the roles of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion injury, including glycolysis, glucose uptake and transport, glycogen metabolism and the pentose phosphate pathway; and triglyceride metabolism, fatty acid uptake and transport, phospholipid metabolism, lipoprotein metabolism, and cholesterol metabolism. Finally, due to the different alterations and development of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion, there are also complex interregulatory relationships between them. In the future, modulating the equilibrium between glucose metabolism and lipid metabolism in cardiomyocytes and ameliorating aberrations in myocardial energy metabolism represent highly promising novel strategies for addressing myocardial ischemia-reperfusion injury. Therefore, a comprehensive exploration of glycolipid metabolism can offer novel theoretical and clinical insights into the prevention and treatment of myocardial ischemia-reperfusion injury.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo
17.
Biomed Pharmacother ; 163: 114795, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37146415

RESUMO

Susceptibility to myocardial ischemia-reperfusion (IR) injury in type-2 diabetes (T2DM) remains disputed, although studies have reported that ferroptosis is associated with myocardial IR injury. Nobiletin, a flavonoid isolated from citrus peels, is an antioxidant that possesses anti-inflammatory and anti-diabetic activities. However, it remains unknown whether nobiletin has any protective effects on susceptibility to myocardial IR injury during T2DM in rats via ferroptosis. To investigate the effects and underlying mechanisms of nobiletin on myocardial IR injury during T2DM, we induced myocardial IR model in rats at T2DM onset vs mature disease. We also established a high-fat high-glucose (HFHG) and hypoxia-reoxygenation (H/R) model in H9c2 cells to imitate abnormal glycolipid metabolism during T2DM. Myocardial injury, oxidative stress and ferroptosis towards myocardial IR in rats with mature T2DM but not at T2DM onset were increased. These changes were restored under treatment with ferrostain-1 or nobiletin. Both ferrostain-1 and nobiletin decreased the expression of ferroptosis-related proteins including Acyl-CoA synthetase long chain family member 4 (ACSL4) and nuclear receptor coactivator 4 (NCOA4) but not glutathione peroxidase 4 (GPX4) in rats with mature T2DM and cells with HFHG and H/R injury. Nobiletin strengthened the effect of si-ACSL4 on inhibiting ACSL4 expression, and also inhibited the effect of Erastin or oe-ACSL4 on increasing ACSL4 expression. Taken together, our data indicates that ferroptosis involves in susceptibility to myocardial IR injury in rats during T2DM. Nobiletin has therapeutic potential for alleviating myocardial IR injury associated with ACSL4- and NCOA4-related ferroptosis.


Assuntos
Diabetes Mellitus Tipo 2 , Ferroptose , Flavonas , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Flavonas/farmacologia , Flavonas/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
18.
Biomedicines ; 11(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37238930

RESUMO

(1) SAH induces cellular stress and endoplasmic reticulum stress, activating the unfolded protein response (UPR) in nerve cells. IRE1 (inositol-requiring enzyme 1) is a protein that plays a critical role in cellular stress response. Its final product, Xbp1s, is essential for adapting to changes in the external environment. This process helps maintain proper cellular function in response to various stressors. O-GlcNAcylation, a means of protein modification, has been found to be involved in SAH pathophysiology. SAH can increase the acute O-GlcNAcylation level of nerve cells, which enhances the stress capacity of nerve cells. The GFAT1 enzyme regulates the level of O-GlcNAc modification in cells, which could be a potential target for neuroprotection in SAH. Investigating the IRE1/XBP1s/GFAT1 axis could offer a promising avenue for future research. (2) Methods: SAH was induced using a suture to perforate an artery in mice. HT22 cells with Xbp1 loss- and gain-of-function in neurons were generated. Thiamet-G was used to increase O-GlcNAcylation; (3) Results: Severe neuroinflammation caused by subarachnoid hemorrhage leads to extensive endoplasmic reticulum stress of nerve cells. Xbp1s, the final product of unfolded proteins induced by endoplasmic reticulum stress, can induce the expression of the hexosamine pathway rate limiting enzyme GFAT1, increase the level of O-GlcNAc modification of cells, and have a protective effect on neural cells; (4) Conclusions: The correlation between Xbp1s displayed by immunohistochemistry and O-GlcNAc modification suggests that the IRE1/XBP1 branch of unfolded protein reaction plays a key role in subarachnoid hemorrhage. IRE1/XBP1 branch is a new idea to regulate protein glycosylation modification, and provides a promising strategy for clinical perioperative prevention and treatment of subarachnoid hemorrhage.

19.
Appl Opt ; 62(8): 1952-1960, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-37133080

RESUMO

The accuracy of binocular visual system calibration using the traditional method is poor in the depth direction. To enlarge the high-accuracy field of view (FOV) of a binocular visual system, a 3D spatial distortion model (3DSDM) based on the 3D Lagrange difference is proposed to minimize 3D space distortion. In addition, a global binocular visual model (GBVM) is proposed that contains the 3DSDM and a binocular visual system. The GBVM calibration method and 3D reconstruction method are based on the Levenberg-Marquardt method. Experiments were carried out to verify the accuracy of our proposed method by measuring the length of the calibration gauge in a 3D space. Experiments show that compared to traditional methods our method can improve the calibration accuracy of a binocular visual system. Our GBVM has a lower reprojection error, higher accuracy, and a larger working field.

20.
Front Immunol ; 14: 1142512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215098

RESUMO

Diabetes mellitus is a metabolic disease with a high prevalence worldwide, and cardiovascular complications are the leading cause of mortality in patients with diabetes. Diabetic cardiomyopathy (DCM), which is prone to heart failure with preserved ejection fraction, is defined as a cardiac dysfunction without conventional cardiac risk factors such as coronary heart disease and hypertension. Mitochondria are the centers of energy metabolism that are very important for maintaining the function of the heart. They are highly dynamic in response to environmental changes through mitochondrial dynamics. The disruption of mitochondrial dynamics is closely related to the occurrence and development of DCM. Mitochondrial dynamics are controlled by circadian clock and show oscillation rhythm. This rhythm enables mitochondria to respond to changing energy demands in different environments, but it is disordered in diabetes. In this review, we summarize the significant role of circadian clock-controlled mitochondrial dynamics in the etiology of DCM and hope to play a certain enlightening role in the treatment of DCM.


Assuntos
Relógios Circadianos , Cardiomiopatias Diabéticas , Dinâmica Mitocondrial , Humanos , Mitocôndrias/patologia , Diabetes Mellitus , Cardiomiopatias Diabéticas/patologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...